Effects of impregnation of softwood with sulfuric acid and sulfur dioxide on chemical and physical characteristics, enzymatic digestibility, and fermentability.
نویسندگان
چکیده
Hydrothermal pretreatment improves bioconversion of lignocellulose, but the effects of different acid catalysts are poorly understood. The effects of sulfuric acid (SA) and sulfur dioxide (SD) in continuous steam pretreatment of wood of Norway spruce were compared in the temperature range 195°C-215°C. The inhibitory effects of the pretreatment liquid on cellulolytic enzymes and Saccharomyces cerevisiae yeast were higher for SD- than for SA-pretreated material, and the inhibitory effects increased with increasing pretreatment temperature. However, the susceptibility to cellulolytic enzymes of wood pretreated with SD was 2.0-2.9 times higher than that of wood pretreated with SA at the same temperature. Data conclusively show that the superior convertibility of SD-pretreated material was not due to inhibition phenomena but rather to the greater capability of the SD pretreatment to reduce the particle size through partial delignification and cellulose degradation. Particle size was shown to be correlated with enzymatic digestibility (R2 0.97-0.98).
منابع مشابه
Comparative Studies on Effect of Pretreatment of Rice Husk for Enzymatic Digestibility and Bioethanol Production
Three common pretreatment processes based on dilute sulfuric acid, dilute sodium hydroxide and heat treatment (autoclaving) followed by enzymatic hydrolysis were evaluated to provide comparative performance data. Among them, the best result was obtained when the pretreatment of rice husk was carried out with 3% of NaOH solution. The pretreatment of rice husk with NaOH substantially increased th...
متن کاملComparative study on chemical pretreatment (acid and ozone) methods for improving enzymatic digestibility of sugar cane bagasse
Sugarcane bagasse contains cellulose, lignin and hemicellulose, 39-42%, 20-25% and 25-27% respectively. So it is can be used as a sugar source in many processes. Lignin and hemicellulose must be removed before hydrolysis of cellulose. Several different pretreatment approaches have been studied. The purpose of this research is comparison of acid, ozone and combination of ozone-acid as pretreatme...
متن کاملComparative study on chemical pretreatment (acid and ozone) methods for improving enzymatic digestibility of sugar cane bagasse
Sugarcane bagasse contains cellulose, lignin and hemicellulose, 39-42%, 20-25% and 25-27% respectively. So it is can be used as a sugar source in many processes. Lignin and hemicellulose must be removed before hydrolysis of cellulose. Several different pretreatment approaches have been studied. The purpose of this research is comparison of acid, ozone and combination of ozone-acid as pretreatme...
متن کاملComparative study on chemical pretreatment (acid and ozone) methods for improving enzymatic digestibility of sugar cane bagasse
Sugarcane bagasse contains cellulose, lignin and hemicellulose, 39-42%, 20-25% and 25-27% respectively. So it is can be used as a sugar source in many processes. Lignin and hemicellulose must be removed before hydrolysis of cellulose. Several different pretreatment approaches have been studied. The purpose of this research is comparison of acid, ozone and combination of ozone-acid as pretreatme...
متن کاملPilot-scale steam explosion pretreatment with 2-naphthol to overcome high softwood recalcitrance
BACKGROUND Steam explosion pretreatment has been examined in many studies for enhancing the enzymatic digestibility of lignocellulosic biomass and is currently the most common pretreatment method in commercial biorefineries. It is however not effective for overcoming the extremely high recalcitrance of softwood to biochemical conversion. Recent fundamental research in small-scale liquid hot wat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Bioresource technology
دوره 247 شماره
صفحات -
تاریخ انتشار 2018